319 research outputs found

    The Q2Q^2 dependence of the measured asymmetry A1A_1: the test of the Bjorken sum rule

    Full text link
    We analyse the proton and deutron data on spin dependent asymmetry A1(x,Q2)A_1(x,Q^2) supposing the DIS structure functions g1(x,Q2)g_1(x,Q^2) and F3(x,Q2)F_3(x,Q^2) have the similar Q2Q^2-dependence. As a result, we have obtained that Γ1pΓ1n=0.190±0.038\Gamma_1^p - \Gamma_1^n = 0.190 \pm 0.038 at Q2=10GeV2Q^2= 10 GeV^2 and Γ1pΓ1n=0.165±0.026\Gamma_1^p - \Gamma_1^n = 0.165 \pm 0.026 at Q2=3GeV2Q^2= 3 GeV^2, what is in the best agreement with the Bjorken sum rule predictions.Comment: LaTeX, 5 pages, no figures, to be published in JETP Letter

    Experimental Evidence for Simple Relations between Unpolarized and Polarized Parton Distributions

    Get PDF
    The Pauli exclusion principle is advocated for constructing the proton and neutron deep inelastic structure functions in terms of Fermi-Dirac distributions that we parametrize with very few parameters. It allows a fair description of the recent NMC data on F2p(x,Q2)F^p_2(x,Q^2) and F2n(x,Q2)F^n_2(x,Q^2) at Q2=4GeV2Q^2=4 GeV^2, as well as the CCFR neutrino data at Q2=3Q^2=3 and 5GeV25 GeV^2. We also make some reasonable and simple assumptions to relate unpolarized and polarized quark parton distributions and we obtain, with no additional free parameters, the spin dependent structure functions xg1p(x,Q2)xg^p_1(x,Q^2) and xg1n(x,Q2)xg^n_1(x,Q^2). Using the correct Q2Q^2 evolution, we have checked that they are in excellent agreement with the very recent SMC proton data at Q2=10GeV2Q^2=10 GeV^2 and the SLAC neutron data at Q2=2GeV2Q^2=2 GeV^2.Comment: 17 pages,CPT-94/P.3032,latex,6 fig available on cpt.univ-mrs.fr directory pub/preprints/94/fundamental-interactions /94-P.303

    A Precise Measurement of the Weak Mixing Angle in Neutrino-Nucleon Scattering

    Get PDF
    We report a precise measurement of the weak mixing angle from the ratio of neutral current to charged current inclusive cross-sections in deep-inelastic neutrino-nucleon scattering. The data were gathered at the CCFR neutrino detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino energies up to 600 GeV. Using the on-shell definition, sin2θW1MW2MZ2{\rm sin ^2\theta_W} \equiv 1 - \frac{{\rm M_W} ^2}{{\rm M_Z} ^2}, we obtain sin2θW=0.2218±0.0025(stat.)±0.0036(exp.syst.)±0.0040(model){\rm sin ^2\theta_W} = 0.2218 \pm 0.0025 ({\rm stat.}) \pm 0.0036 ({\rm exp.\: syst.}) \pm 0.0040 ({\rm model}).Comment: 10 pages, Nevis Preprint #1498 (Submitted to Phys. Rev. Lett.

    Nuclear Structure Functions in the Large x Large Q^2 Kinematic Region in Neutrino Deep Inelastic Scattering

    Full text link
    Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment at Fermilab contain events with large Bjorken x (x>0.7) and high momentum transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no nuclear effects at large x, shows a significant excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the excess. Adding a higher momentum tail due to the formation of ``quasi-deuterons'' makes some improvement. An exponentially falling F_2 \propto e^-s(x-x_0) at large x, predicted by ``multi-quark clusters'' and ``few-nucleon correlations'', can describe the data. A value of s=8.3 \pm 0.7(stat.)\pm 0.7(sys.) yields the best agreement with the data.Comment: 4 pages, 4 figures, 1 table. Sibmitted to PR

    Determination of the Strange Quark Content of the Nucleon from a Next-to-Leading-Order QCD Analysis of Neutrino Charm Production

    Full text link
    We present the first next-to-leading-order QCD analysis of neutrino charm production, using a sample of 6090 νμ\nu_\mu- and νˉμ\bar\nu_\mu-induced opposite-sign dimuon events observed in the CCFR detector at the Fermilab Tevatron. We find that the nucleon strange quark content is suppressed with respect to the non-strange sea quarks by a factor \kappa = 0.477 \: ^{+\:0.063}_{-\:0.053}, where the error includes statistical, systematic and QCD scale uncertainties. In contrast to previous leading order analyses, we find that the strange sea xx-dependence is similar to that of the non-strange sea, and that the measured charm quark mass, mc=1.70±0.19GeV/c2m_c = 1.70 \pm 0.19 \:{\rm GeV/c}^2, is larger and consistent with that determined in other processes. Further analysis finds that the difference in xx-distributions between xs(x)xs(x) and xsˉ(x)x\bar s(x) is small. A measurement of the Cabibbo-Kobayashi-Maskawa matrix element Vcd=0.2320.020+0.018|V_{cd}|=0.232 ^{+\:0.018}_{-\:0.020} is also presented. uufile containing compressed postscript files of five Figures is appended at the end of the LaTeX source.Comment: Nevis R#150

    A High Statistics Search for Electron-Neutrino --> Tau-Neutrino Oscillations

    Full text link
    We present new limits on nu_e to nu_tau and nu_e to nu_sterile oscillations by searching for electron neutrino dissappearance in the high-energy wide-band CCFR neutrino beam. Sensitivity to nu_tau appearance comes from tau decay modes in which a large fraction of the energy deposited is electromagnetic. The beam is composed primarily of muon neutrinos but this analysis uses the 2.3% electron neutrino component of the beam. Electron neutrino energies range from 30 to 600 GeV and flight lengths vary from 0.9 to 1.4 km. This limit improves the sensitivity of existing limits and obtains a lowest 90% confidence upper limit in sin**2(2*alpha) of 9.9 x 10**(-2) at delta-m**2 of 125 eV**2.Comment: submitted to Phys. Rev. D. Rapid Com

    A measurement of alphas(Q2)alpha_s(Q^2) from the Gross-Llewellyn Smith Sum Rule

    Full text link
    We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared (Q2Q^{2}), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for 1<Q2<15GeV2/c21 < Q^2 < 15 GeV^2/c^2. A comparison with the order αs3\alpha^{3}_{s} theoretical predictions yields a determination of αs\alpha_{s} at the scale of the Z-boson mass of 0.114±.012.0090.114 \pm^{.009}_{.012}. This measurement provides a new and useful test of perturbative QCD at low Q2Q^2, because of the low uncertainties in the higher order calculations.Comment: 4 pages, 4 figure

    Leptoproduction of Heavy Quarks in the Fixed and Variable Flavor Schemes

    Full text link
    We compare the results of the fixed-flavor scheme calculation of Laenen, Riemersma, Smith and van Neerven with the variable-flavor scheme calculation of Aivazis, Collins, Olness and Tung for the case of neutral-current (photon-mediated) heavy-flavor (charm and bottom) production. Specifically, we examine the features of both calculations throughout phase space and compare the structure function F2(x,Q2)F_2(x,Q^2). We also analyze the dependence of F2F_2 on the mass factorization scale μ\mu. We find that the former is most applicable near threshold, while the latter works well for asymptotic Q2Q^2. The validity of each calculation in the intermediate region is dependent upon the xx and Q2Q^2 values chosen.Comment: LaTeX format, 19 pages, 20 figures in uuencoded format. Postscript file available at ftp://smuphy.physics.smu.edu/usr/ftpdir/pub/paper
    corecore